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Experimental modelling and estimation of time varying thermal sources
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Abstract

This paper shows an experimental design where two steps are carried out: (i) the identification of a low order state representation through
temperature evolutions corresponding to step responses of a system, (ii) the use of this model to solve an inverse heat conduction problem
(IHCP) consisting in the estimation of several strength variations generated by heat sources from time-varying temperature evolutions.

Experiments are realized on a 3D heat conductive system (a thick stainless steel tube) in which are set four heat sources, a fifth thermal
strength consists in an applied flux boundary condition. After the model identification, a sequential method is used for the resolution of the
IHCP: from temperature measurements, the evolutions of the five strengths are identified and compared to the electrical measurements.
 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

As a general rule, an inverse heat conduction problem
(IHCP) consists in the estimation of physical parameters,
initial conditions, boundary conditions or heat sources from
temperature measurements [1–3]. For multi-dimensional
heat conduction problems, a fine description of the studied
system by a classical modelling (finite elements, control
volumes,. . .) leads to a model of high dimension which
becomes much more difficult to use with experimental or
simulated data [4,5]. In order to lighten this drawback,
techniques using the boundary elements [6,7] or the discrete
cosine transform analysis [8] can be used.

The results of the IHCP depend strongly on the accuracy
of the modelling: all the parameters that are supposed to
be known (boundary conditions, thermal properties, thermal
resistances, etc.) must be well evaluated before the inversion.

Due to the ill-posed nature of the inverse problem, the
time varying estimation of the heat source intensities is
highly sensitive to sensor position. In order to regularize the
IHCP, the function specification method due to Beck [1,9,
10] can be used.
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In order to avoid difficulties in relation to high-dimen-
sional model and in relation with a good knowledge of all the
previous parameters, we use here an Identified Model (IM)
which is obtained from some specific experiments. Then, by
using this IM—which is low dimensioned—we propose to
estimate five time varying unknowns from the knowledge of
temperature evolutions at some points of the domain. In this
field of investigation, previous numerical works have already
been presented concerning the resolution of IHCP through a
reduced model [11,12].

The originality of this work consists in an experimental
application of the methodology, using a three-dimensional
diffusive medium, in which are located heat sources and
thermocouples. The objective is to estimate simultaneously
four unknown heat source strengths and one boundary con-
dition (heat flux). The method used to build IM uses only
decreasing temperature measurements. This experimental
modelling, based on responses to step inputs, does not re-
quire the knowledge of the thermal properties and consti-
tutes then a calibration tool, which then allows solving the
IHCP.

In the first part of the paper, the experimental device is
described. Then, the principles of the model identification
method are presented. Afterwards, the inverse method is
developed through the use of future time. Finally, some
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Nomenclature

cP specific heat . . . . . . . . . . . . . . . . . . . . J·kg−1·K−1

f (m,m) diagonal matrix relative to current EIM . . s−1

F (n,n) diagonal matrix of eigenvalues for IM . . . . s−1

g(m) vector applyinġu
G(n,p) input matrix for IM
h(q,m) output matrix relative to current EIM
H (q,n) output matrix for IM
m order of EIM
n order of IM
nf number of future times for specification function
nt number of measurement times
p dimension of input vector
q number of sensors
qV volume heat source . . . . . . . . . . . . . . . . . . W·m−3

R electric resistance . . . . . . . . . . . . . . . . . . . . . . . .�
s(q) static vector relative to current EIM
S(q,p) static matrix, static sensitivity matrix
Si,j static sensitivity of sensori relatively to inputj
T , Ṫ temperature vector, its derivative . . . . K, K·s−1

u, u̇ current component ofU , its derivative
U(p) input vector

x, ẋ(m) EIM state vector, its derivative
y(q) EIM output vector
Y (q) output vector for IM . . . . . . . . . . . . . . . . . . . . . . K
Z macro output vector . . . . . . . . . . . . . . . . . . . . . . K

Abbreviations

DM Detailed Model
EIM Elementary Identified Model
FTS Future Time Step
IHCP Inverse Heat Conduction Problem
IM Identified Model

Greeks symbols

�t time step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
λ thermal conductivity . . . . . . . . . . . . W·m−1·K−1

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

σY root mean square forY . . . . . . . . . . . . . . . . . . . . K
τ time constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s

Superscripts

T transposition sign
* measured value

results presenting the estimation of the five heat source
strengths are compared to the electrical measurements.

2. Experimental device and process

The main part of the experiment is a thick cylinder (ex-
ternal diameter= 100 mm, internal diameter= 20 mm,
length= 150 mm) composed of stainless steel whose prop-
erties areλ = 14.9 W·m−1·◦C−1, cP = 477 J·kg−1·◦C−1

andρ = 7900 kg·m−3. The external surface of this cylin-
der is insulated with rock wool (100 mm thick). Five heat
sources and twenty T-type thermocouples in a stainless steel
sheath (3 mm in external diameter and 30 mm long) are
placed in different sections and depths of the device. A gen-
eral view of the position of the sources and thermocouples
is given in Fig. 1. Four cylindrical heat elements (6.5 mm in
diameter and 40 mm long) represent 4 volume sources: VS1,
VS2, VS3 and VS4. The fifth heat source is a surface source
SS5. It is a heater ring placed on the external surface of the
stainless steel cylinder.

Note that an optimal position has not been chosen for
the sensors. The aim here was to set several sensors in
the wall tube and then to solve the IHCP with different
configurations, including the optimum one.

Fig. 2 shows a general view of the device. The sources
are driven through a five-channel power modulator. By
removing periods of the main supply, each channel can
be adjusted from 1% to 100% of the maximum power of
the thermal heating. The dissipated power in each source

depends on the supply voltage and the mean resistance
of each element. Table 1 shows the mean value of each
resistance. The temperature dependence of the resistance
is low for our power domain. The power modulator is
controlled from the PC, as well as the timing of the
power modulation. The strength of each heat source is then
calculated with the voltage and the resistanceR of the
heating device.

The heat extraction is realised with a high-rate water
flow that maintains a constant temperature in a closed cir-
cuit with a refrigerated circulator, in such a way that the
temperature difference between the inlet and the outlet is
small (about 0.2◦C maximum). The heat transfer coeffi-
cient between the solid and the water is supposed to be con-
stant because the flow rate does not vary in time. The tem-
perature measurements in the cylinder and water flow are
given by thermocouples connected to the data acquisition
system.

In order to decrease the measurement noise of the ther-
mocouples, each acquisition corresponds to a mean between
four temperatures recorded successively at 20 Hz. These
measurements are stored in the PC for future calculation.

Table 1
Mean electric resistance of each heat source

VS1 VS2 VS3 VS4 SS5

R(�) 430 421 455 418 89
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Fig. 1. The 3D diffusive system. Position of the 5 heat sources and the 20 thermocouples (dimensions in mm).

3. The identified model

3.1. Model structure

Heat transfer inside the thick cylinder is governed by the
energy equation:

ρ · cP · ∂T
∂t

= λ · ∇2T + qV (1)

associated to initial and boundary conditions. In Eq. (1),λ, ρ
andcP are the material properties,T the temperature,t the
time andqV the volume source term. Classically, in order
to identify the heat sources, a 3D spatial discretization is
necessary through a finite element method for example.

In previous works [11–14], it has been shown how the
discretization of Eq. (1) could be written under a state-space
formulation called Detailed Model (DM):{

Ṫ (t) = AT (t)+ BU(t) (a)

Y (t) = DT (t) (b)
(2)

Where T (t) (dim. N ) is the state vector,U(t) (dim.
p) contains the thermal inputs andY (t) (dim. q) the
computed outputs that are selected by the user.A, B, D are
respectively the state, input and output matrices.

Moreover, it has been shown how Eqs. (2) could be
written under a low dimensioned state-space formulation:{

Ẋ(t) = FX(t)+ GU̇ (t) (a)

Y (t) = HX(t)+ SU (t) (b)
(3)

Where X(t) (dim. n 	 N ) is the new state vector in a
reduced modal base,F the diagonal matrix of eigenvalues,
G and H the input and output matrices andS the static
matrix.

In this paper, instead of computing matricesF , G, H

and S from an original DM, they will be identified from
experimental data. Then, the formulation of Eqs. (3) ensures
us a good model structure in the case of heat diffusion
process.

Let us underline that the main advantage of this identifi-
cation is that the knowledge of thermal properties as well as
the heat transfer coefficients (for convective boundary condi-
tion) are not necessary. These parameters will be included in
the matricesF , G, H andS. IM will then provide a relation
between the thermal inputs included inU (t) and the outputs
included inY (t). So, this model gives a Multi-Input Multi-
Output (MIMO) relation through a low-order state equation.
It is then particularly well adapted to IHCP, which consists
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Fig. 2. General view of the device.

in the estimation of the input vectorU(t) from the knowl-
edge ofY (t).

The principle of our model identification consists in a
minimization procedure of a quadratic criterion built on the
difference between the temperature measurements and IM
outputs given by Eq. (3b).

It should be noted that several inputs are included in
U (t). In order to set up the IM Eqs. (3), several elementary
identified models, built on each component ofU , are used.

3.2. Elementary identified model

As the assumption of linearity is made, the superposition
principle can be applied.

In fact, IM is built with as many EIMs as components
of U : each componentUi(t) is associated with an EIM.
Let u(t) = Ui(t) (1 � i � p) be the current component of
U . Each EIM has a similar structure as Eq. (3) and can be
written as:

{
ẋ(t)= f x(t)+ gu̇(t) (a)

y(t) = hx(t)+ su(t) (b)
(4)

wherex (dim. m) is a state vector relative to the scalaru,
and f is the corresponding matrix of the eigenvaluesfi

(1� i � m). The output vectory represents the contribution
of theu(t) effect in the final output vectorY of Eq. (3b).
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Fig. 3. Principle of experimental modelling.

Note that this formulation also gives information about
the time constantsτi as:

fi = − 1

τi
, 1 � i � m (5)

It has been shown [11–14] how all the different matrices in
Eqs. (4), as well as the orderm, can be obtained with an
identification procedure. It consists in the minimization of
a quadratic criterion relative to the difference between the
experimental outputsy∗ (decreasing temperature measure-
ments) and the analytical outputs of EIMy when a step is
applied as shown in Fig. 3. For a given orderm, this crite-
rion Jred is written as:

Jred(m,f ,g,h)=
q∑

i=1

nt∑
k=1

[
y∗
ik(experiment)− yik(EIM)

]2

(6)

wherent is the number of time steps contained in theq

outputs.
The experimental procedure is then the following one.

For each heat source (here VS1, VS2, VS3, VS4 and SS5)
and relatively to theq = 20 sensors:

– Setting of a constant power on each source indepen-
dently:u= uS = constant.

– Storage of the corresponding steady output vectory∗
S for

the 20 sensors.
– Calculation of the static vectors from Eq. (4) with

ẋ(t) = 0 and u̇(t) = 0. Then, each component ofs is
approached by:

si = (y∗
s )i

us
, 1 � i � q (7)

– At t = 0, the power is cut off and the temperature
decreases are stored (Fig. 4). An exponential time step
is used in order to obtain more temperature information
at short times.

Fig. 4. Decreasing temperature of sensor T1 relatively to SS5.

– Minimization of the quadratic criterion given by Eq. (6)
in order to obtainm, f , g, h.

For the 5 sources, the results concerning the time constant
valuesτi (1 � i � m) are given in Table 2. For each input,
we can see that:

– The quadratic criterionJred decreases versus the identi-
fied orderm.

– The orderm= 10 corresponds to a stabilization ofJred.
– In fact, form = 10, Jred (≈ 0.035◦C2) is in relation to

the measurement noise.

We have tested several values ofm for each EIM. The use
of the orderm = 5 has been chosen for each EIM. The act
of increasingm has not significantly improved the direct and
inverse computation results.

Note. For each EIM, this identification corresponds to a kind
of Duhamel formulation. The responses of step inputs are
given through this EIM and only on the measured points.
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Table 2
Identified time constants and quadratic criterionJred for each orderm of EIM

m 1 2 3 4 5 6 7 8 9 10
source

VS1 τ (s) 520 540 600 638 1053 1123 1160 1191 1191 1191
232 151 213 404 409 362 361 430 590

72.5 117 216 240 360 360 361 430
31.4 45.1 85.1 186 186 360 362

44.9 29.7 38.5 119 186 359
29.6 28.9 38.5 119 186

28.6 28.9 38.5 119
28.6 28.9 38.5

28.6 28.9
28.6

Jred (◦C2) 28.4 1.87 0.43 0.20 0.075 0.053 0.047 0.046 0.044 0.041

VS2 τ (s) 530 530 632 640 885 2813 4040 4123 4123 4123
214 138.1 213 356 607 660 664 670 670

137.9 91.4 216 186.7 219 217.3 217.2 217.2
22.3 59.9 186.6 218 217.1 217.1 217.1

24.9 50.5 51.0 51.0 51.0 51.0
25.1 45.7 45.7 45.7 45.7

25.1 25.1 39.4 39.4
20.0 25.1 25.3

19.9 25.1
19.9

Jred (◦C2) 42.6 3.65 0.65 0.27 0.082 0.050 0.042 0.041 0.038 0.036

VS3 τ (s) 500 536 604 637 1663 2260 2712 5581 3285 3297
250 165 226 510 545 582 5574 3280 3295

60.6 96.5 219 260 221.3 556 527 526
39.2 53.5 130 221.1 201 258 258

53.3 43.08 30.9 198 157 157
43.07 26.8 35.5 83.3 83.3

26.2 24.4 22.4 42.1
23.0 21.0 22.4

18.4 21.0
18.4

Jred (◦C2) 25.3 2.17 0.39 0.16 0.069 0.050 0.039 0.034 0.032 0.032

VS4 τ (s) 587 564 659 1825 1618 2410 3211 4132 4132 4189
201 199 484 440 529 2247 4130 4130 4075

123 187 231 155 526 546 546 546
94.3 63 155 157.5 179 179 179

6.8 35.7 157.1 176 177 177
11.0 31.6 56.7 176 176

12.3 31.5 56.7 56.7
12.3 31.5 31.5

12.3 27.1
12.3

Jred (◦C2) 16.7 1.50 0.30 0.13 0.066 0.041 0.036 0.033 0.033 0.032

SS5 τ (s) 509 551 636 1271 1538 1681 1682 1636 1636 1639
197 231 453 487 514 517 493 493 493

62.6 169 253 267 275 491 491 491
31.9 29.1 55.8 66.5 255 255 255

29.0 22.1 31.9 60.8 60.8 60.8
8.8 13.0 22.3 22.3 22.3

8.4 14.6 17.4 17.4
6.7 14.6 15.0

6.7 14.6
6.7

Jred (◦C2) 296 26.9 5.94 2.00 0.41 0.062 0.039 0.035 0.034 0.033
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3.3. IM reconstitution

When all thep EIMs are identified, IM can be reconsti-
tuted from all thep relations (4). The matrices of the com-
plete IM given by Eq. (3) have then the following form:

X = [
x1 · · ·xp

]T

F = [
diag(f i )

]
, 1 � i � p

G = [
diag(gi )

]
, 1 � i � p

H = [h1 · · ·hp]
S = [s1 · · · sp]

(8)

X is then a macro vector, andF , G, H , S macro matrices
built with the current elements of Eqs. (4):x, f , g, h ands.
Each EIM in relation toUi is characterised by its own order
mi (= 5) and the final IM order will be then:

n =
p∑
i=1

mi (9)

So, here we haven = 5 × 5 = 25. Let us underline that the
main advantage of this representation is that each input acts
with its own dynamics in relation to the output vector. The
inputs have consequently no correlated influences.

For any IM order, matrixS is built with all the vectorss
from Eq. (7):

VS1 VS2 VS3 VS4 SS5

S =

T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20




4.73× 10−2 4.09× 10−2 2.97× 10−2 2.86× 10−2 0.238
3.60× 10−2 2.96× 10−2 3.69× 10−2 3.05× 10−2 0.242
2.71× 10−2 3.07× 10−2 4.27× 10−2 2.20× 10−2 0.202
2.63× 10−2 3.04× 10−2 2.77× 10−2 1.64× 10−2 0.150
0.100 7.72× 10−2 4.07× 10−2 5.45× 10−2 0.150
5.36× 10−2 3.92× 10−2 5.60× 10−2 5.14× 10−2 0.131
4.23× 10−2 5.38× 10−2 0.110 4.01× 10−2 0.165
6.54× 10−2 9.90× 10−2 6.73× 10−2 3.53× 10−2 0.178
0.182 0.120 5.18× 10−2 8.71× 10−2 9.83× 10−2

0.120 6.77× 10−2 5.57× 10−2 9.40× 10−2 8.48× 10−2

7.88× 10−2 5.12× 10−2 8.25× 10−2 8.86× 10−2 8.58× 10−2

6.23× 10−2 5.77× 10−2 0.154 7.92× 10−2 0.107
5.47× 10−2 7.44× 10−2 0.201 5.63× 10−2 0.106
6.36× 10−2 0.113 0.157 4.55× 10−2 0.112
9.46× 10−2 0.172 9.64× 10−2 4.75× 10−2 0.109
0.145 0.173 6.26× 10−2 6.14× 10−2 0.102
0.210 9.80× 10−2 7.37× 10−2 0.201 5.94× 10−2

7.98× 10−2 7.31× 10−2 0.245 0.121 7.22× 10−2

8.06× 10−2 0.165 0.245 5.98× 10−2 7.59× 10−2

0.235 0.341 8.06× 10−2 8.58× 10−2 6.86× 10−2



(10)

Each termSi,j of matrix S represents the static sensitivity
of sensori in relation to inputj . Its unit is here◦C·W−1.
The heat sources are classified as follows: input 1: VS1 in
column 1, input 2: VS2 in column 2, etc.

Thanks to this sensitivity matrix, we can notice for
example:

– That sensors T5, T9, T10, T16, T17 and T20 are more
sensitive to VS1 than other sensors (see column VS1).

– That, for example, sensor T9 is very sensitive to VS1
and VS2.

If these considerations are not very important for the direct
simulation, they will have a real interest in the inverse
problem, as will be seen further.

3.4. Time discretization

If we assume thatU(t) = U(k + 1) is constant between
time stepsk�t and (k + 1)�t , the time discretization of
Eq. (3a) gives (see Appendix A):

X(k + 1)= exp[F�t]{X(k)+ G
[
U(k + 1)− U(k)

]}
(11)

Then, Eq. (3b) leads to a linear relation between the output
vectorY (k + 1) and the input vectorU (k + 1):

Y (k + 1) = [
H exp(F�t)G + S

]
U(k + 1)

+ H exp(F�t)
[
X(k)− GU(k)

]
(12)

WhenU(k) is known, Eq. (12) allows the computation of
the output vectorY for each time step.

3.5. IM test through a direct problem

Before using IM for the resolution of IHCP, it is neces-
sary to test it. This stage consists in comparing sensor tem-
peratures to the temperatures given by a simulation with IM
when all the inputs are known. In the studied case, two heat
sources are used: VS2 and SS5. As a result, IM is composed
of the two corresponding EIMs of order 5. Fig. 5 shows the
strength variations of VS2 and SS5.

The deviation between temperatures simulated with IM
and experimental ones is shown in Fig. 6 for two sensors
T2 and T20. The quality of these results guarantees that the
EIMs are correctly identified.

4. Inverse algorithm

IM is now used in order to solve IHCP. The procedure
is sequential. Knowing the input vectorU (k) at the time
step k, the aim is to estimate the vectorU(k + 1) from
temperatures at time stepk + 1 and/or later. So, future
time steps (FTS) [1,3,4] can be used in order to take into
account the lagging and damping effects of the diffusion
process. A function specification procedure is introduced.

Fig. 5. Strength variations of VS2 and SS5.
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Fig. 6. Deviation between experimental temperatures and computed ones.

Consequently, a temporary assumption is made on the
additional unknowns:U (k + 1 + 1), . . . ,U (k + 1 + nf )

wherenf is the number of FTS. Here, we have chosen:

U (k + 1+ i)= U (k + 1) for 1 � i � nf

According to Eq. (12), the inversion procedure, using the
least square method, leads to the resolution of the squared
system:

CTCU (k + 1)= CT(
Z∗ − B

)
(13)

with:

C =




c0
c1
...

cnf


B =




b0
b1
...

bnf


Z∗ =




Y ∗(k + 1)
Y ∗(k + 1+ 1)

...

Y ∗(k + 1+ nf )


 (14)

where:

ci = H exp
[
(i + 1)F�t

]
G + S for 0 � i � nf (15a)

bi = H exp
[
(i + 1)F�t

]
× [

X(k)− GU(k)
]

for 0 � i � nf (15b)

The addition of future time steps takes into account the lag-
ging and damping effects of the diffusion process. Moreover,
it is a regularization procedure, which acts directly on the
matrix (CTC) to invert (Eq. (13)). This technique is well
adapted to the sequential method.

5. Results and discussion

The experimental apparatus is composed of 20 sensors
and 5 heat sources. Each source is submitted to various
strength variations for two hours (sinusoidal, triangular or
square time-varying strength).

Using 20 sensors, temperature histories are measured at
different locations in the diffusive medium for two hours
with �t = 30 s.

Many inversion tests have been carried out [11]. For
example, the strength variations of the 5 heat sources have

Fig. 7. Decoupling between the sensors.

been identified from all the 20 temperature evolutions and
the identification results were very good because of the
overdetermined system.

So, in this paper, we present only the results concerning
five sensors that have to be selected among the twenty.
That corresponds toC5

20 = 15 504 possibilities. In order to
obtain satisfactory inversion results, it is important that the
sensors should be uncoupled. This correlation notion can
be appreciated with five-order determinants extracted from
the sensitivity matrix. So, the 15 504 five-order determinants
have been calculated using the static sensitivities of matrix
S given by Eq. (10). Let us recall that the matrixS has
been previously obtained during the identification process.
In order to keep the dimension of sensitivity; we extract the
fifth root of the five-order determinants. Consequently, the
variableΓS = 5

√
det(S) (◦C·W−1) gives the uncorrelation

between the sensors.
Of course, to invert, the most favourable case is when the

value ofΓS is maximum. The higher is this value, the better
is the configuration. The 15 504 values ofΓS are shown on
Fig. 7. We can see, for example, that configurations A, B and
C correspond to relevant choices of sensors for the inversion.

The greatest value ofΓS (ΓS = 0.167◦C·W−1, configu-
ration B on Fig. 7) corresponds to the sensors T2, T9, T17,
T19 and T20. Consequently, this set of sensors is used for
the inversion.

Note. It should be noted that the sensors that are the
nearest from the sources are T1, T16, T17, T18 and T20.
Consequently, the greatest value ofΓS does not correspond
to an obvious configuration where each sensor is located
near a source. This can be explained by the fact that the
nearest thermocouples are also sensitive to other sources. For
example, T1, which is the nearest thermocouple from SS5, is
also sensitive to VS1, VS2 and VS4. On the contrary, T2 is
further from SS5 but is less sensitive to the volume sources.

The temperature evolutions of these sensors are repre-
sented in Fig. 8. The temperature acquisition period is equal
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Table 3
Influence of the number of FTSnf onσY

nf 0 1 2 3 4 5

σY (◦C) ∞ 1.27× 10−2 3.53× 10−2 6.77× 10−2 0.108 0.155

Fig. 8. Temperature evolutions of sensors T2, T9, T17, T19 and T20 with
�t = 30 s.

to 30 seconds. These temperatures are injected into the in-
verse algorithm that contains IM composed of 5 EIMs. The
resolution of IHCP is done for different numbers of FTS.

For each case, an evaluation of the difference between
the original temperatures included inY ∗ (the measurements)
and the computed ones assembled inY (calculated with the
identified inputsU ) is calculated. This criterion gives an
estimation of the standard deviation of the temperatures and
can be written:

σY =
[

1

(nt − 1− nf )× q

×
q∑

i=1

(nt−1−nf )∑
k=1

[
Y ∗
i (k)− Y i (k)

]2

]1/2

(16)

The inversion results are summarised in Table 3 for different
nf values. The number of FTS for whichσY is the lowest is
equal to 1. The optimum value ofnf is consequentlynf = 1.

Remark. This optimum value is in accordance with many
references [9,10] where an adimensional time step greater
than 0.1 is recommended to solve the IHCP without regu-
larization (for a 2D case). In fact, in our 3D case, using the
thermal properties of stainless steel and the sensors and heat
sources positions, the different adimensional time steps (rel-
atively to the nearest heat source) can be calculated. They
vary between 0.074 and 1.19.

The inversion results, as well as the real strengths, known
for this test case (electrically measured) are presented in
Figs. 9–13 for each heat source.

Fig. 9. Estimation of the strength generated by VS1 withnf = 1.

Fig. 10. Estimation of the strength generated by VS2 withnf = 1.

Fig. 11. Estimation of the strength generated by VS3 withnf = 1.
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Fig. 12. Estimation of the strength generated by VS4 withnf = 1.

Fig. 13. Estimation of the strength generated by SS5 withnf = 1.

Comments

– The results are quite satisfactory except for some small
interferences between VS2, VS3 and VS4. The contri-
bution of each heat source to the sensor temperature can
be restored, although the strengths vary in very different
manners.

– Here, this inversion is carried out with the minimum of
sensors (q = 5) and the optimum set.

– Nevertheless, the use of other sensors whose sensitivi-
ties are more correlated is possible, especially if we use
more sensors.

– The computing duration is very small for different
reasons:
• On the one hand, the IM dimension is low and only

the computation of a state vector of dimension 25 is
needed (included inB Eq. (14)).

• On the other hand, in the state equation (3a), matrix
F is diagonal, thus easy to compute.

6. Conclusion

This study deals with two identification problems that are
fundamentally different:

– The first one is related to the model identification
knowing its structure and experimental responses to
several step excitations. The basic assumptions of this
identified model are the linearity and the invariance of
parameters.

– The second one consists in using the identified model in
order to estimate the strength variations using tempera-
ture measurements.

The main advantages of IM are the following:

– Its modal formulation allows to obtain directly and
separately the contribution of each heat source to the
observed temperatures.

– Its identification is made “in situ”. IM acts as a cali-
bration model including the thermal properties, the con-
vective coefficients, the sensor positions and the contact
resistances. The system is modeled in a global way.

– The act of building IM with responses to step in-
puts integrates weak non-linearities (physical properties,
boundary conditions) and then gives a good approxi-
mated linear model.

– The computer duration is very low.
– This experimental modelling avoids the spatial dis-

cretization of the domain, which leads to a high dimen-
sioned matrix to invert.

All these interesting features have led us to use such a
model to invert temperature measurements. This experimen-
tal model contains all the parameters of the experiment and
restores them in the inverse problem.

Concerning the inverse problem, only the knowledge of a
signal proportional to a temperature difference is sufficient
in order to identify the thermal strength variations. So, we
are not dependent on the accuracy of the sensors: IM acts
as a calibration tool for the measurement of the strength
generated by heat sources. This methodology could allow
the designing of tools for heat flux measurements. Moreover,
such an IM could be particularly well adapted for real time
process command.

The main drawback lies in the practical realisation of a
strength step on each input separately. In industrial context,
the thermal systems do not always allow such an approach.
Of course, another limit of this approach is that the inversion
is made with a model that includes all the thermal properties
and boundary conditions. IM is not a parametric model:
if a heat transfer coefficient changes, another IM must be
identified. However in some cases, by using some correcting
fluxes, it is also possible to overcome this difficulty [15].
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Appendix A

It is shown that the analytical solution of the state
equation:

Ẋ(t) = FX(t)+ GU̇(t) (A.1)

is given by:

X(t) = eF (t−t0)X(t0)+
t∫

t0

eF (t−τ )GU̇(τ )dτ

We use this analytical solution betweenk×�t and(k+1)×
�t :

X(k + 1)= eF�tX(k)+
(k+1)�t∫
k�t

eF [(k+1)�t−τ ]GU̇(τ )dτ

X(k + 1)= eF�tX(k)+ eF (k+1)�t

(k+1)�t∫
k�t

e−F τGU̇(τ )dτ

By integrating the second term by parts:

X(k + 1)

= eF�tX(k)+ eF (k+1)�t

[[
e−F τGU(τ)

](k+1)�t

k�t

+ F

(k+1)�t∫
k�t

e−F τGU(τ)dτ

]

= eF�tX(k)+ eF (k+1)�t

×
[[

e−F (k+1)�tGU(k + 1)− e−F k�tGU(k)
]

+ F

(k+1)�t∫
k�t

e−F τGU(τ)dτ

]

By writing thatU(τ) =U(k+1) between time stepsk×�t

and(k + 1)×�t , we obtain:

X(k + 1)

= eF�tX(k)+ eF(k+1)�t

×
[[

e−F(k+1)�tGU(k + 1)− e−Fk�tGU(k)
]

+ FGU(k + 1)

(k+1)�t∫
k�t

e−Fv dv

]

= eF�tX(k)+ eF (k+1)�t

× [[
e−F (k+1)�tGU(k + 1)− e−F k�tGU(k)

]
− GU(k + 1)

[
e−F τ

](k+1)�t

k�t

]

= eF�tX(k)+ eF (k+1)�t

× [[
e−F (k+1)�tGU(k + 1)− e−F k�tGU(k)

]
− GU(k + 1)

[
e−F (k+1)�t − e−F k�t

]]
= eF�tX(k)+ [

GU(k + 1)− eF�tGU(k)
]

− GU(k + 1)
[
1 − eF�t

]
Finally, the time discretization of Eq. (A.1) is then:

X(k + 1)= eF�tX(k)+ eF�tG
[
U(k + 1)−U(k)

]
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