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Abstract

This paper shows an experimental design where two steps are carried out: (i) the identification of a low order state representation through
temperature evolutions corresponding to step responses of a system, (ii) the use of this model to solve an inverse heat conduction probler
(IHCP) consisting in the estimation of several strength variations generated by heat sources from time-varying temperature evolutions.

Experiments are realized on a 3D heat conductive system (a thick stainless steel tube) in which are set four heat sources, a fifth therma
strength consists in an applied flux boundary condition. After the model identification, a sequential method is used for the resolution of the
IHCP: from temperature measurements, the evolutions of the five strengths are identified and compared to the electrical measurements.
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1. Introduction In order to avoid difficulties in relation to high-dimen-
sional model and in relation with a good knowledge of all the
As a general rule, an inverse heat conduction problem previous parameters, we use here an Identified Model (IM)
(IHCP) consists in the estimation of physical parameters, which is obtained from some specific experiments. Then, by
initial conditions, boundary conditions or heat sources from ysing this IM—which is low dimensioned—we propose to
temperature measurements [1-3]. For multi-dimensional estimate five time varying unknowns from the knowledge of
heat conduction problems, a fine description of the studied temperature evolutions at some points of the domain. In this
system by a classical modelling (finite elements, control fig|q of investigation, previous numerical works have already

volumes, ..) leads to a model of high dimension which heen presented concerning the resolution of IHCP through a
becomes much more difficult to use with experimental or .4 ~ad model [11,12].

f'mﬁlated datg [f'r’]s]'bm c()jrder tlo Ilghtten6 t7h|s c:rr]aV\épack,t The originality of this work consists in an experimental
echniques using the boundary elemen s [6,7] or the discre eapplication of the methodology, using a three-dimensional
cosine transform analysis [8] can be used.

The results of the IHCP depend strongly on the accuracyd'ﬁuswe medium, in W.hlch are Iocatgd heat_sources and
of the modelling: all the parameters that are supposed tothermocouples. The objective is to estimate simultaneously
be known (boundary conditions, thermal properties, thermal Ur unknown heat source strengths and one boundary con-
resistances, etc.) must be well evaluated before the inversiondition (heat flux). The method used to build IM uses only

Due to the ill-posed nature of the inverse problem, the decreasing temperature measurements. This experimental
time varying estimation of the heat source intensities is Modelling, based on responses to step inputs, does not re-
highly sensitive to sensor position. In order to regularize the quire the knowledge of the thermal properties and consti-
IHCP, the function specification method due to Beck [1,9, tutes then a calibration tool, which then allows solving the
10] can be used. IHCP.

In the first part of the paper, the experimental device is

BEIPN . described. Then, the principles of the model identification
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E-mail addressese.videcoq@iut.univ-evry.fr (E. Videcoq), method are presented. Afterwards, the inverse method is
daniel.petit@let.ensma.fr (D. Petit). developed through the use of future time. Finally, some
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Nomenclature

cp specificheat .................... kgtK-1 x,%(m) EIM state vector, its derivative

f(m,m) diagonal matrix relative to current EIM .. ~% y(g)  EIM output vector

F(n,n) diagonal matrix of eigenvaluesforIM ....$ Y(g) outputvectorforIiM...................... K
g(m)  vector applyingt z macro outputvector ...................... K

G(n, p) input matrix for IM
h(gq,m) output matrix relative to current EIM
H(gq,n) output matrix for IM

Abbreviations

DM Detailed Model
EIM Elementary Identified Model

m order of EIM ’

n order of IM FTS Future Time Step .

nf number of future times for specification function IHCP Inver.s_e Heat Conduction Problem

nt number of measurement times M Identified Model

p dimension of input vector Greeks symbols

q number of sensors At ME SIEP ..ot 5
qv volume heatsource.................. w3 5 thermal conductivity .. .......... wh-L.K-1

R elegtrlc reS|stanc? ...................... Q 0 AENSIY . oo v e kg3
s(q)  static vector relative to current EIM oy root mean square faf.................... K
S(q, p) static matrix, static sensitivity matrix T time CoNStant . ... .....oooeeeeeeeanns. S
Sij static sensitivity of sensarrelatively to input; .

T,T temperature vector, its derivative . ... KK! Superscripts

u,u current component df, its derivative T transposition sign

*

U(p) inputvector measured value

results presenting the estimation of the five heat sourcedepends on the supply voltage and the mean resistance
strengths are compared to the electrical measurements. of each element. Table 1 shows the mean value of each
resistance. The temperature dependence of the resistance
is low for our power domain. The power modulator is
2. Experimental device and process controlled from the PC, as well as the timing of the
power modulation. The strength of each heat source is then
The main part of the experiment is a thick cylinder (ex- calculated with the voltage and the resistarReof the

ternal diametee= 100 mm, internal diameter 20 mm, heating device.
length= 150 mm) compolsed OI stainless steel wlhoselprop- The heat extraction is realised with a high-rate water
erties arer = 149 W-m™=°C™%, cp = 477 Jkg-°C™~ flow that maintains a constant temperature in a closed cir-

_ -3 ‘s ovli L . . :
and p = 7900 kgm™. The external surface of this cylin-  cyit with a refrigerated circulator, in such a way that the
der is insulated with rock wool (100 mm thick). Five heat emperature difference between the inlet and the outlet is
sources and twenty T-type thermocouples in a stainless steef o, (about 0.2C maximum). The heat transfer coeffi-

sheath (3 mm in external diameter and 30 mm long) are ;jeny petween the solid and the water is supposed to be con-
place(_j in different st_a(_:tmns and depths of the device. A gen- stant because the flow rate does not vary in time. The tem-
eral view of the position of the sources and thermocouples perature measurements in the cylinder and water flow are

'S given in Fig. 1. Four cylindrical heat elements (6.5 mm in given by thermocouples connected to the data acquisition
diameter and 40 mm long) represent 4 volume sources: VSl,System

VS2, VS3 and VS4. The fifth heat source is a surface source .
In order to decrease the measurement noise of the ther-

SS5. Itis a heater ring placed on the external surface of the _—
. . mocouples, each acquisition corresponds to a mean between
stainless steel cylinder. .
four temperatures recorded successively at 20 Hz. These

Note that an optimal position has not been chosen for i i
the sensors. The aim here was to set several sensors iﬁneasurements are stored in the PC for future calculation.

the wall tube and then to solve the IHCP with different
configurations, including the optimum one.

Fig. 2 shows a general view of the device. The sources 1. 1
are driven through a five-channel power modulator. By wean electric resistance of each heat source
removing periods of the main supply, each channel can
be adjusted from 1% to 100% of the maximum power of
the thermal heating. The dissipated power in each source

vsi1 vS2 VS3 VsS4 SS5
R(Q) 430 421 455 418 89
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Fig. 1. The 3D diffusive system. Position of the 5 heat sources and the 20 thermocouples (dimensions in mm).

3. Theidentified model Moreover, it has been shown how Eqgs. (2) could be
written under a low dimensioned state-space formulation:
3.1. Model structure . .
Xt)=FX(@t)+GU(t) (a)
Heat transfer inside the thick cylinder is governed by the | y(s) = HX (1) + SU(¢) (b)
energy equation:

3)

Where X (z) (dim. n <« N) is the new state vector in a

aT . - .
p-cp- o= A V2T + qv Q) reduced modal basé; the diagonal matrix of eigenvalues,
) ! o - G and H the input and output matrices arfithe static
associated to initial and boundary conditions. In Eq.X1p matrix.
andcp are the material propertie®, the temperature, the In this paper, instead of computing matricEs G, H

time andgy the volume source term. Classically, in order anqg 5 from an original DM, they will be identified from

to identify the heat sources, a 3D spatial discretization is experimental data. Then, the formulation of Egs. (3) ensures
necessary through a finite element method for example. us a good model structure in the case of heat diffusion
In previous works [11-14], it has been shown how the process.

discretization of Eg. (1) could be written under a state-space

: ) Let us underline that the main advantage of this identifi-
formulation called Detailed Model (DM):

cation is that the knowledge of thermal properties as well as

T(t)=AT()+ BU®) (@) the heat transfer coefficients (for convective boundary condi-

Y1) = DT (1) (b) (2) tion) are not necessary. These parameters will be included in
- the matrices, G, H andS. IM will then provide a relation
Where T(t) (dim. N) is the state vectorU(z) (dim. between the thermal inputs includedlif(+) and the outputs
p) contains the thermal inputs anH(t) (dim. g) the included inY (¢). So, this model gives a Multi-Input Multi-

computed outputs that are selected by the useB, D are Output (MIMO) relation through a low-order state equation.
respectively the state, input and output matrices. It is then particularly well adapted to IHCP, which consists
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Fig. 2. General view of the device.
in the estimation of the input vectdr () from the knowl- In fact, IM is built with as many EIMs as components
edge ofY (¢). of U: each component/;(¢) is associated with an EIM.

The principle of our model identification consists in a Letu(r) = U;(t) (1< i < p) be the current component of

minimization procedure of a quadratic criterion built on the 7. Each EIM has a similar structure as Eq. (3) and can be
difference between the temperature measurements and IMyritten as:

outputs given by Eq. (3b).
It should be noted that several inputs are included in
U(1). In order to set up the IM Egs. (3), several elementary | X(t) = fx(1) +gu(t)  (a)
identified models, built on each componenibfare used. y(t) = hx (1) + su(r) (b) (4)

3.2. Elementary identified model wherex (dim. m) is a state vector relative to the scalgr

and f is the corresponding matrix of the eigenvalugs
As the assumption of linearity is made, the superposition (1 < i < m). The output vectoy represents the contribution
principle can be applied. of theu(r) effect in the final output vectdr of Eq. (3b).
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temperatures

W)

Minimization algorithm :
----------------------- - least squares
- conjugate gradients

Fig. 3. Principle of experimental modelling.

50

Note that this formulation also gives information about
the time constants as: sk~ Exponential time step
ﬁ:—l, 1<i<m (5) 40
Ti 6
It has been shown [11-14] how all the different matricesin & ;5
Egs. (4), as well as the order, can be obtained with an 3
identification procedure. It consists in the minimization of £ 39
a quadratic criterion relative to the difference between the g
experimental outputs* (decreasing temperature measure- = 25
ments) and the analytical outputs of ElMwhen a step is —
Il | 1

applied as shown in Fig. 3. For a given orderthis crite- 20

. . . 0 1000 2000 3000 4000
rion Jyeg IS written as:

Time (s)
q nt
Jredim, f, g, h) = Z Z[y;kk (experiment— J/ik(E|M)]2 Fig. 4. Decreasing temperature of sensor T1 relatively to SS5.
i=1k=1
(6) — Minimization of the quadratic criterion given by Eq. (6)

wherens is the number of time steps contained in the in order to obtainn, f, g, h.

outputs. . .

The experimental procedure is then the following one. For the 5 sources, the results concerning the time constant
For each heat source (here VS1, VS2, VS3, VS4 and SS5)valuest (1< i <m) are given in Table 2. For each input,
and relatively to they = 20 sensors: we can see that:

— Setting of a constant power on each source indepen- ~ The quadratic criteriodeq decreases versus the identi-

dently:u = us = constant. fied ordenn. L
— Storage of the corresponding steady output vectdor — The ordern = 10 corresponds to azs,tqb|_llzat|0nﬂgd.

the 20 SENSOrs. — In fact, form = 10, Jreq (= 0.035°C?) is in relation to
— Calculation of the static vectar from Eq. (4) with the measurement noise.

x(t) =0 andu(t) = 0. Then, each component efis
We have tested several valuesmffor each EIM. The use

approached by:
. of the ordern = 5 has been chosen for each EIM. The act
5 = O . 1<i<g 7) pf increasingn ha_s not significantly improved the direct and
Us inverse computation results.

— At + = 0, the power is cut off and the temperature
decreases are stored (F|g 4) An exponentia| time StepNOte. For each EIM, this identification COI’I’eSpondS to a kind

is used in order to obtain more temperature information of Duhamel formulation. The responses of step inputs are
at short times. given through this EIM and only on the measured points.
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Table 2
Identified time constants and quadratic criterifgq for each ordem of EIM
m 1 2 3 4 5 6 7 8 9 10
source
VS1 7(s) 520 540 600 638 1053 1123 1160 1191 1191 1191
232 151 213 404 409 362 361 430 590
725 117 216 240 360 360 361 430
314 451 851 186 186 360 362
44.9 297 385 119 186 359
296 289 385 119 186
286 289 385 119
286 289 385
286 289
286
Jred (°C?) 28.4 1.87 0.43 0.20 0.075 0.053 0.047 0.046 0.044 0.041
VS2 7(S) 530 530 632 640 885 2813 4040 4123 4123 4123
214 1381 213 356 607 660 664 670 670
137.9 914 216 1867 219 2173 2172 2172
223 599 1866 218 2171 2171 2171
24.9 505 510 510 510 510
251 457 457 457 457
251 251 394 394
20.0 251 253
19.9 251
19.9
Jred (°C?) 42.6 3.65 0.65 0.27 0.082 0.050 0.042 0.041 0.038 0.036
VS3 7(s) 500 536 604 637 1663 2260 2712 5581 3285 3297
250 165 226 510 545 582 5574 3280 3295
60.6 965 219 260 22B 556 527 526
392 535 130 221 201 258 258
533 4308 309 198 157 157
4307 268 355 833 833
26.2 244 224 421
230 210 224
184 210
184
Jred (°C?) 25.3 217 0.39 0.16 0.069 0.050 0.039 0.034 0.032 0.032
VsS4 7(s) 587 564 659 1825 1618 2410 3211 4132 4132 4189
201 199 484 440 529 2247 4130 4130 4075
123 187 231 155 526 546 546 546
94.3 63 155 155 179 179 179
6.8 357 1571 176 177 177
110 316 567 176 176
123 315 56.7 56.7
123 315 315
123 271
123
Jred (°C?) 16.7 1.50 0.30 0.13 0.066 0.041 0.036 0.033 0.033 0.032
SS5 7(S) 509 551 636 1271 1538 1681 1682 1636 1636 1639
197 231 453 487 514 517 493 493 493
62.6 169 253 267 275 491 491 491
319 291 558 665 255 255 255
290 221 319 608 608 608
8.8 130 223 223 223
8.4 146 174 174
6.7 146 150
6.7 146
6.7
Jred (°C?) 296 26.9 5.94 2.00 0.41 0.062 0.039 0.035 0.034 0.033
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3.3. IM reconstitution

When all thep EIMs are identified, IM can be reconsti-
tuted from all thep relations (4). The matrices of the com-
plete IM given by Eq. (3) have then the following form:

X=[x1--x,]"

F =[diagf)]. 1<i<p

G =[diagg)]. 1<i<p (8)
H=1[hi -h,]

S=1[s1---5pl

X is then a macro vector, anll, G, H, S macro matrices
built with the current elements of Egs. (4); f, g, k ands.
Each EIM in relation taU; is characterised by its own order
m; (=5) and the final IM order will be then:

9)

So, here we have =5 x 5= 25. Let us underline that the

261

3.4. Time discretization

If we assume that/(r) = U(k + 1) is constant between
time stepskAr and (k + 1)Ar, the time discretization of
Eq. (3a) gives (see Appendix A):
X(k+1)=exgFAr){X(k)+ G[Uk+1) —UK]} (11)
Then, Eqg. (3b) leads to a linear relation between the output
vectorY (k + 1) and the input vectol/ (k + 1):
Y(k+1) = [Hexp(FAG + S|U(k + 1)

+ Hexp(FAn)[X (k) — GU (k)] (12)

WhenU (k) is known, Eg. (12) allows the computation of
the output vectol for each time step.

3.5. IM test through a direct problem

Before using IM for the resolution of IHCP, it is neces-
sary to test it. This stage consists in comparing sensor tem-
peratures to the temperatures given by a simulation with IM

main advantage of this representation is that each input actsvhen all the inputs are known. In the studied case, two heat

with its own dynamics in relation to the output vector. The
inputs have consequently no correlated influences.

For any IM order, matrix§ is built with all the vectors
from Eq. (7):

VS1

M 4.73x 1072
3.60x 1072
2.71x 102
2.63x 1072
0.100
5.36x 102
423% 1072
6.54x 102
0.182
0.120
7.88x 1072
6.23x 1072
5.47x 10~
6.36x 1072
9.46x 1072
0.145
0.210
7.98x 1072
8.06x 10~2

L 0.235

VS2

4.09x 1072
2.96x 102
3.07x 1072
3.04x 102
772x 102
3.92x 1072
5.38x 102
9.90x 102
0120
677x 1072
5.12x 1072
5.77x 1072
7.44%10™
0.113

0.172

0173
980x 1072
7.31x 1072
0.165

0341

VS3

2.97x 1072
3.69x 1072
427x 102
277x 102
407x 102
5.60x 1072
0.110

6.73x 102
518x 102
557 x 1072
8.25x 1072
0.154

0.201

0157

964 x 1072
626x 1072
7.37x 1072
0.245

0245

806 x 102

VsS4

2.86x 1072
3.05x 1072
2.20x 102
1.64x 102
5.45x 102
5.14x 102
401x 102
353x 1072
8.71x 102
9.40x 102
8.86x 1072
792x 1072
563x 1072
455x 102
475x 1072
6.14x 10~
0.201

0121
598x 102
858x 1072

SS5

0.238
0.242

0.202

0.150

0.150

0.131

0.165

0178
9.83x 102
8.48x 10~
8.58x 1072
0.107

0.106

0.112

0.109

0.102

594x 1072
722x 1072
7.59% 102
6.86x 1072 _]

(10)

T1
T2
T3
T4
T5
T6
T7
T8
T9

T10

T11

T12

T13

T14

T15

T16

T17

T18

T19

T20

Each termsS; ; of matrix S represents the static sensitivity
of sensori in relation to input;. Its unit is heré C-W—1.
The heat sources are classified as follows: input 1: VS1 in
column 1, input 2: VS2 in column 2, etc.

Thanks to this sensitivity matrix, we can notice for
example:

— That sensors T5, T9, T10, T16, T17 and T20 are more
sensitive to VS1 than other sensors (see column VS1).

— That, for example, sensor T9 is very sensitive to VS1
and VS2.

If these considerations are not very important for the direct
simulation, they will have a real interest in the inverse
problem, as will be seen further.

sources are used: VS2 and SS5. As a result, IM is composed
of the two corresponding EIMs of order 5. Fig. 5 shows the
strength variations of VS2 and SS5.

The deviation between temperatures simulated with IM
and experimental ones is shown in Fig. 6 for two sensors
T2 and T20. The quality of these results guarantees that the
EIMs are correctly identified.

4. Inversealgorithm

IM is now used in order to solve IHCP. The procedure
is sequential. Knowing the input vectdr(k) at the time
stepk, the aim is to estimate the vect®f(k + 1) from
temperatures at time step+ 1 and/or later. So, future
time steps (FTS) [1,3,4] can be used in order to take into
account the lagging and damping effects of the diffusion
process. A function specification procedure is introduced.

140
—— 585
- T Vvs2
wr ol
80 |-
Z 60
N’
s 40
g
= 2
w .
0 HER L SO IR - S— N
I 1 s 1 s I
0 1800 3600 5400 7200
Time (s)

Fig. 5. Strength variations of VS2 and SS5.
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4 0.2
H Uncoupled Sensors
3+ {
s | i N TR N
< 2F Thermocouple T2 ‘ 0.15 + , o .
g L d
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£ g
= il
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g L
= 3r
4 I L 1 . 1 . 1 . 0 [ = .'T*"‘.: :
0 1800 . 5400 7200 0 2000 4000 6000 8000 10000 12000 14000

Time (s) Sensor configurations

Fig. 6. Deviation between experimental temperatures and computed ones. Fig. 7. Decoupling between the sensors
Consequently, a temporary assumption is made on the
additional unknownsU(k + 1+ 1),..., Uk + 1 + nf)
wherenf is the number of FTS. Here, we have chosen:

been identified from all the 20 temperature evolutions and
the identification results were very good because of the
overdetermined system.

Uk+1+i)=Uk+1) forl<i<nf So, in this paper, we present only the results concerning
five sensors that have to be selected among the twenty.
dThat corresponds tdgo = 15504 possibilities. In order to
obtain satisfactory inversion results, it is important that the
sensors should be uncoupled. This correlation notion can
C'CU(k+1)=C"(Z" - B) (13) be appreciated with five-order determinants extracted from
the sensitivity matrix. So, the 15 504 five-order determinants

According to Eq. (12), the inversion procedure, using the
least square method, leads to the resolution of the square
system:

with: . . o :
P have been calculated using the static sensitivities of matrix
o ZO Y*Yk( "1' )1 S given by Eq. (10). Let us recall that the matri has
_| 4 _ ! k+1+D) been previously obtained during the identification process.
c=| . |B=| . = : (14) ) ) o
: : : In order to keep the dimension of sensitivity; we extract the
Cuf b, Y*k+1+nf) fifth root of the five-order determinants. Consequently, the
where: variable I's = /det(S) (°C-W~1) gives the uncorrelation
' between the sensors.
ci=Hex(i+DFAt]G+S forO<i<nf (15a) Of course, to invert, the most favourable case is when the
bi=H exd(i 4 1)FAt] yalue ofFS_|s maximum. The higher is this value, the better
. is the configuration. The 15504 valuesdf are shown on
x [X(k) = GU (k)] forO<i<nf  (15b) Fig. 7. We can see, for example, that configurations A, B and

The addition of future time steps takes into account the lag- C correspond to relevant choices of sensors for the inversion.
ging and damping effects of the diffusion process. Moreover, ~ The greatest value dfs (I's = 0.167°C-W™*, configu-

it is a regularization procedure, which acts directly on the ration B on Fig. 7) corresponds to the sensors T2, T9, T17,
matrix (C'C) to invert (Eq. (13)). This technique is well 119 and T20. Consequently, this set of sensors is used for
adapted to the sequential method. the inversion.

Note. It should be noted that the sensors that are the
5. Resultsand discussion nearest from the sources are T1, T16, T17, T18 and T20.
Consequently, the greatest valuelaf does not correspond
The experimental apparatus is composed of 20 sensorgd0 an obvious configuration where each sensor is located
and 5 heat sources. Each source is submitted to varioushear a source. This can be explained by the fact that the
strength variations for two hours (sinusoidal, triangular or nearestthermocouples are also sensitive to other sources. For
square time-varying strength). example, T1, which is the nearest thermocouple from SS5, is
Using 20 sensors, temperature histories are measured a@lso sensitive to VS1, VS2 and VS4. On the contrary, T2 is
different locations in the diffusive medium for two hours further from SS5 but is less sensitive to the volume sources.
with At =30 s.
Many inversion tests have been carried out [11]. For = The temperature evolutions of these sensors are repre-
example, the strength variations of the 5 heat sources havesented in Fig. 8. The temperature acquisition period is equal
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Table 3
Influence of the number of FT&f onoy
nf 0 1 2 3 4 5
oy (°C) 00 1.27x 1072 353x 1072 6.77x 1072 0.108 0.155

60 80

70 Measured strength  —+—Identified strength

50 60 |-
5) 50
<
] 40
E 4r z
® < 30 |-
S =
2 i)
£ —=—T9 £ 20
S 30 ——T17 b=
= ——T19 ®2 10

——T20
0 -
20 L ' L I
0 1800 3600 5400 7200 -10 Lt ' ' ;
. 0 1000 2000 3000 4000 5000 6000 7000
Time (s) .
Time (s)
Fig. 8. Temperature evolutions of sensors T2, T9, T17, T19 and T20 with
At =30s. Fig. 9. Estimation of the strength generated by VS1 with= 1.
60
to 30 seconds. These temperatures are injected into the in- — Measured strength —»— Identified strength
verse algorithm that contains IM composed of 5 EIMs. The 50 -
resolution of IHCP is done for different numbers of FTS. N
For each case, an evaluation of the difference between

the original temperatures includedif (the measurements) s 30 -
and the computed ones assembled ifcalculated with the < I
identified inputsU) is calculated. This criterion gives an & 2°[

estimation of the standard deviation of the temperatures andé’ 10 »

can be written:

0
oy = 1 -10
(nt—1—nf)xgq
q (nt—1—nf) 1/2
2 .
x> > (Yt -Yib)] (16) Fig
i=1 k=1
The inversion results are summarised in Table 3 for different 70
nf values. The number of FTS for whiely is the lowest is 60
equalto 1. The optimum value of is consequentlyf = 1.
50
Remark. This optimum value is in accordance with many 40 7
references [9,10] where an adimensional time step greaterg 0
than 0.1 is recommended to solve the IHCP without regu- 5 3|
larization (for a 2D case). In fact, in our 3D case, using the § 2
thermal properties of stainless steel and the sensors and heaf’ I
sources positions, the different adimensional time steps (rel-
atively to the nearest heat source) can be calculated. They
vary between 0.074 and 1.19.
The inversion results, as well as the real strengths, known
for this test case (electrically measured) are presented in
Figs. 9-13 for each heat source. Fig.

0 1000 2000 3000 4000 5000 6000 7000
Time (s)

. 10. Estimation of the strength generated by VS2 wijth=1.

Measured strength

Faq

—s—Identified strength

1 L 1 n 1 L l " l " L " 1

1000 2000 3000 4000 5000 6000 7000
Time (s)

0

11. Estimation of the strength generated by VS3 with= 1.
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90 .
80 _ Measured strength —~Identified strength 6. Conclusion
ol This study deals with two identification problems that are
60 - fundamentally different:
§‘ 50_—
s 40| — The first one is related to the model identification
g 0 - knowing its structure and experimental responses to
& - several step excitations. The basic assumptions of this
20 identified model are the linearity and the invariance of
10 - parameters.
oL } — The second one consists in using the identified model in
¢ 1000 2000 3000 4006 5000 6000 7000 order to estimate the strength variations using tempera-
Time (s) ture measurements.
Fig. 12. Estimation of the strength generated by VS4 wijth= 1. The main advantages of IM are the following:
% — Its modal formulation allows to obtain directly and
1 separately the contribution of each heat source to the
70 - r observed temperatures.
60 — Its identification is made “in situ”. IM acts as a cali-
bration model including the thermal properties, the con-
or vective coefficients, the sensor positions and the contact
E 40 resistances. The system is modeled in a global way.
£ 30’ & — The act of building IM with responses to step in-
:5 I r puts integrates weak non-linearities (physical properties,
@20 - boundary conditions) and then gives a good approxi-
r Measured strength Identified strength .
10 - mated linear model.
f . I . . . . . — The computer duration is very low.
0 0 1000 2000 3000 4000 5000 6000 7000 — This experimental modelling avoids the spatial dis-
Time (s) cretlzatlon qf the_ domain, which leads to a high dimen-
sioned matrix to invert.
Fig. 13. Estimation of the strength generated by SS5 with- 1.
All these interesting features have led us to use such a
model to invert temperature measurements. This experimen-
tal model contains all the parameters of the experiment and
Comments

restores them in the inverse problem.
Concerning the inverse problem, only the knowledge of a

The results are quite satisfactory except for some small signal proportional to a temperature difference is sufficient
interferences between VS2, VS3 and VS4. The contri- in order to identify the thermal strength variations. So, we
bution of each heat source to the sensor temperature carare not dependent on the accuracy of the sensors: IM acts
be restored, although the strengths vary in very different as a calibration tool for the measurement of the strength
manners. generated by heat sources. This methodology could allow
Here, this inversion is carried out with the minimum of  the designing of tools for heat flux measurements. Moreover,
sensorsq{ = 5) and the optimum set. such an IM could be particularly well adapted for real time
Nevertheless, the use of other sensors whose sensitiviprocess command.
ties are more correlated is possible, especially if we use  The main drawback lies in the practical realisation of a
more sensors. strength step on each input separately. In industrial context,
The computing duration is very small for different the thermal systems do not always allow such an approach.
reasons: Of course, another limit of this approach is that the inversion
e On the one hand, the IM dimension is low and only js made with a model that includes all the thermal properties

the computation of a state vector of dimension 25 is and boundary conditions. IM is not a parametric model:

needed (included i® Eq. (14)). if a heat transfer coefficient changes, another IM must be
e On the other hand, in the state equation (3a), matrix jdentified. However in some cases, by using some correcting

F is diagonal, thus easy to compute. fluxes, it is also possible to overcome this difficulty [15].
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Appendix A
It is shown that the analytical solution of the state
equation:
Xt)=FX()+GU (1) (A1)
is given by:

t
X (1) = eF 0 X (10) + / eF1=IGU () dr
fo

We use this analytical solution betweler Ar and(k + 1) x
At

(k+1)At
Xk+1) =ef2x k) + eF DA =TI G 17 () dr

kAt
(k+1)At
X(k+1) = eF A X (k) + eF ktDA e T GU@x)dr
kAt

By integrating the second term by parts:

X(k+1)
_ FAt F (k+1) At —F (k+1)At
=eFAX (k) + e [e " GU®)],
(k+1) At
+F / efrgu(r)dr
kAt

— eFAl‘X(k) + eF(k+l)At
% [e_F(k+1)AtGU(k +1)— e_FkAtGU(k)]

(k+1) At
+ F / efrGu(r)dr
kAt
By writing thatU (t) = U (k + 1) between time stepsx At
and(k + 1) x At, we obtain:
Xk+1
_ FAtX(k) + el (k+1)Ar

% [e—F(k+l)A1GU(k +1) — e’FkA’GU(k)]

(k+1) At
+FGU(k+1) e fdy
kAt
— eFAtX(k) + eF(k+l)At

x [[e FEVMGU (K +1) — e TR GU ()]

— GU(k + D[e Fr]iIvan

— eF AT X (k) + eF (kDAY
x [[e FHDYGU (K + 1) — e T GU (k)]
—GUk+1) [efp(k+1)m _ ekaAt]]
=efYX (k) +[GUKk +1) — " GU (0]
—GU(k+D[1-e"]
Finally, the time discretization of Eq. (A.1) is then:
X(k+1)=e"Xk) +e"MG[UK+1) —U®)]
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